2020年2月25日 星期二

Evolution of circuits for machine learning機器學習電路的進化


【摘要2020.2.24.自由】劉宜庭
Artificial intelligence AI has allowed computers to solve problems that were previously thought to be beyond their capabilities. There is therefore great interest in developing specialized circuits that can complete AI calculations faster and with lower energy consumption than can current devices.
人工智慧(AI)讓電腦能夠解決此前被認為超出計算機能力範圍的問題。人們因此相當關注專門電路的開發,以實現比現有裝置更快速、能源消耗更低的人工智慧計算。
Writing in Nature, Tao Chen et al. demonstrate an unconventional electrical circuit in silicon that can be evolved in situ to carry out basic machine-learning operations.
陳滔(譯音)等人刊登在《自然》的研究,演示一種在矽材料上的非常規電路,它能直接執行基本的機器學習運算。
Previous work by some of the current authors produced isolated charge puddles from a collection of gold nanoparticles that were randomly deposited on a silicon surface, with insulating molecules between them. These puddles are at the heart of Chen and colleagues’ circuit design.
該研究的其中一些作者先前在矽材料的表面隨機堆積奈米黃金顆粒,並用絕緣分子隔開這些電荷坑。金奈米電荷坑是陳博士團隊的電路設計核心。
新聞辭典
circuits:名詞,電路。例句:Those earlier circuits did not perform machine-learning operations.(那些較早期的電路無法執行機器學習運算。)
charge puddles:專有名詞,電荷坑。例句:Such microscopic inhomogeneities, known as ’charge puddles’, limit the mobility of charge carriers.(這種微觀的非均質性被稱作「電荷坑」,會限制電荷載體的流動性。)
nanoparticles:名詞,奈米粒子、奈米顆粒。例句:Nanoparticles are particles that exist on a nanometre scale.(奈米顆粒係指以奈米尺度存在的粒子。)



沒有留言:

張貼留言